•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

material flow analysis; socio-economic metabolism; resource efficiency; in-use stock; sustainable development goals (SDGs)

Document Type

Article

Abstract

A systematic understanding of the interactions between the socio-economic and natural environment systems could provide a dashboard of quantitative system indicators for monitoring the socio-metabolic transition towards Sustainable Development Goals (SDGs). Based on the mass balance principle and life cycle thinking, material flow analysis and socioeconomic metabolism (SEM) analysis serves as a paradigm for studying the biophysical basis of human societies, including particularly (i) relationship between material stocks and flows, (ii) trade flows of resources, products, and embodied environmental impacts, and (iii) linkages between multiple material cycles. The SEM results could help inform sustainable development strategies and smooth the implementation of green economy, circular economy, and low-carbon economy policies. Here, we laid out a generic framework for the SEM analysis and put SEM into context by exemplifying SEM applications in different regions, sectors, and resources and illustrating how the SEM analysis could inform policy makers in tackling resource, energy, and climate challenges in the long-term socio-metabolic transition. In the end, we proposed a few concrete suggestions for promoting SEM analysis regarding both methodology development and practical applications in China.

First page

30

Last Page

39

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

外交部. 中国落实2030年可持续发展议程国别方案. [2017-10-15]. http://www.fmprc.gov.cn/web/zyxw/t1405173.shtml.

中国政府网. 中共中央国务院印发《生态文明体制改革总体方案》. [2017-10-15]. http://www.mof.gov.cn/zhengwuxinxi/zhengcefabu/201509/t20150923_1472456.htm.

廖明球.国民经济核算中绿色GDP测算探讨.统计研究, 2000, (6):17-21.

欧阳丽伟, 何德文, 柴立元, 等.循环经济评价指标体系进展研究.环境科学与管理, 2006, (3):117-120.

金涌, 王垚, 胡山鹰, 等.低碳经济:理念·实践·创新.中国工程科学, 2008, (9):4-13.

Graedel T E, Allenby B R. Industrial Ecology, Englewood Cliffs, New Jersey:Prentice Hall, 1995.

陆钟武.工业生态学基础.北京:科学出版社, 2009.

习近平.大力发展循环经济, 建设资源节约型、环境友好型社会.管理世界, 2005, (7):1-4.

Ministry of the Environment (Japan). Quality of the Environment in Japan. Tokyo: Ministry of the Environment, 1992.

German Federal Statistical Office. Integrated Environmental and Economic Accounting-Material and Energy Flow Accounts. Berlin: German Federal Statistical Office, 1995.

Eurostat. Economy-Wide Material Flow Accounts and Derived Indicators: A Methodological Guide 2001. Luxembourg: Eurostat, 2001.

陈效逑, 乔立佳.中国经济-环境系统的物质流分析.自然资源学报, 2000, 15(1):17-23.

诸大建, 藏漫丹, 朱远. C模式:中国发展循环经济的战略选择.中国人口·资源与环境, 2005, 15(6):8-12.

Xu M, Zhang T. Material flows and economic growth in developing China. Journal of Industrial Ecology, 2007, 11(1):121-140.

段宁, 李艳萍, 孙启宏, 等.中国经济系统物质流趋势成因分析.中国环境科学, 2008, 28(1):68-72.

Wang H, Hashimoto S, Moriguchi Y, et al. Resource use in growing China. Journal of Industrial Ecology, 2012, 16(4):481-492.

Chen W Q, Graedel T E. Anthropogenic cycles of the elements:A critical review. Environmental Science & Technology, 2012, 46(16):8574-8586.

Hatayama H, Daigo I, Matsuno Y, et al. Outlook of the world steel cycle based on the stock and flow dynamics. Environmental Science & Technology, 2010, 44(16):6457-6463.

Glöser S, Soulier M, Tercero-Espinoza L A. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation. Environmental Science & Technology, 2013, 47(12):6564-6572.

Chen W Q, Graedel T E. Dynamic analysis of aluminum stocks and flows in the United States:1900-2009. Ecological Economics, 2012, 81:92-102

Kapur A, Keoleian G, Kendall A, et al. Dynamic modeling of in-use cement stocks in the United States. Journal of Industrial Ecology, 2008, 12(4):539-556.

Müller D B, Wang T, Duval B, et al. Exploring the engine of anthropogenic iron cycles. PNAS, 2006, 103(44):16111-16116.

Liu G, Müller D B. Centennial evolution of aluminum in-use stocks on our aluminized planet. Environmental Science & Technology, 2013, 47(9):4882-4888.

Cao Z, Shen L, Løvik A N, et al. Elaborating the history of our cementing societies:an in-use stock perspective. Environmental Science & Technology, 2017, 51(19):11468-11475.

世界银行. 世界发展指标2017. https://data.worldbank.org.cn.

Schandl H, Fischer-Kowalski M, West J, et al. Global Material Flows and Resource Productivity: Assessment Report for the UNEP International Resource Panel. Nairobi: UNEP, 2016.

Wiedmann T O, Schandl H, Lenzen M, et al. The material footprint of nations. PNAS, 2015, 112(20):6271-6276.

Liu G, Müller D B. Mapping the global journey of anthropogenic aluminum:A trade-linked multilevel material flow analysis. Environmental Science & Technology, 2013, 47(20):11873-11881.

Zhang C, Anadon L D, Mo H, et al. Water-carbon tradeoff in China's coal power industry. Environmental Science & Technology, 2014, 48(19):11082-11089.

Habib K, Wenzel H. Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. Journal of Cleaner Production, 2014, 84:348-359.

Hamilton H A, Peverill M S, Müller D B, et al. Assessment of food waste prevention and recycling strategies using a multilayer systems approach. Environmental Science & Technology, 2015, 49(24):13937-13945.

Liu G, Bangs C E, Müller D B. Stock dynamics and emission pathways of the global aluminium cycle. Nature Climate Change, 2013, 3(4):338-342.

Lin C, Liu G, Müller D B. Characterizing the role of built environment stocks in human development and emission growth. Resources, Conservation and Recycling, 2017, 123:67-72.

Pauliuk S, Müller D B. The role of in-use stocks in the social metabolism and in climate change mitigation. Global Environmental Change, 2014, 24:132-142.

Modaresi R, Müller D B. The role of automobiles for the future of aluminum recycling. Environmental Science & Technology, 2012, 46(16):8587-8594.

Share

COinS