Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
remote sensing mechanism; remote sensing application; future development
Document Type
Article
Abstract
Modern remote sensing generally refers to the use of satellite-or aircraft-based sensor technologies to detect objects on earth and subsequent digital imaging presentations by the specific spectral information. Remote sensing has become the critical technique to explore the earth system sciences and multidisciplinary spatial information applications. In this study, we provided a brief review on the principles, applications and progresses for the major remote sensing technologies, and focused on the characteristics and important technical breakthroughs for high spatial, spectral, and temporal resolution remote sensing. We introduced remote sensing applications in economics, ecologies, defenseand so on, and also forecasted several major directions and trends for future remote sensing.
First page
774
Last Page
784
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
Richards J A. Remote Sensing Digital Image Analysis -An Introduction. Berlin, German: Springer Berlin Heidelberg, 2012.
Zhang B, Li S, Jia X, et al. Adaptive markov random field approach for classification of hyperspectral imagery. Geoscience and Remote Sensing Letters, IEEE, 2011, (8): 973-977.
Zhang B, JiaX, Chen Z C, et al. A patch-based image classification by integrating hyperspectral data with GIS. International Journal of Remote Sensing, 2006, 27(15): 3337-3346.
Tong X, Hong Z, Liu S, et al. Building-damage detection using pre-and post-seismic high-resolution satellite stereo imagery: a case study of the May 2008 Wenchuan earthquake. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 68(3):13-27.
Goetz A F H, Vane G, Solomon J, et al. Imaging spectrometry for Earth remote sensing, Science, 1985, 228(4704): 1147-1153.
Goetz A F H.Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment, 2009, (113): S5-S16.
张兵.高光谱图像处理与信息提取前沿.遥感学报, 2016, 20(5): 1062-1090.
Zhang B, Wang X J, Liu J G, et al. Hyperspectral image processing and analysis system (HIPAS) and its application. Photogrammetric Engineering and Remote Sensing, 2000, 66(5):605-609.
童庆禧, 张兵, 张立福.中国高光谱遥感的前沿进展.遥感学报, 2016, 20(5): 689-707.
Zhang B, Wu D, Zhang L, et al. Application of hyperspectral remote sensing for environment monitoring in mining areas. Environmental Earth Sciences, 2012, 65(3): 649-658.
Peng D L, Zhang B, Liu L Y, et al. Characteristics and drivers of global NDVI-based FPAR from 1982 to 2006. Global Biogeochemical Cycles, 2012, 26(3): 1-15.
Zhang B, Zhang X, Liu T. Dynamic analysis of hyperspectral vegetation indices. Proceedings of SPIE, 2001, (4548): 32-38.
Li Z L, Wu H, Wang N, et al. Land surface emissivity retrieval from satellite data. International Journal of Remote Sensing, 2013, 34(9-10): 3084-3127.
Li Z L, Tang B H, Wu H, et al. Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 2013, 131(4): 14-37.
Moreira A, Prats-IraolaP, Younis M, et al. A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 2013, (3): 6-43.
郭华东, 李新武.新一代SAR对地观测技术特点与应用拓展.科学通报, 2011, 56(15): 1155-1168.
Ni Li, Gao L R, Li S S, et al. Edge-constrained Markov randomfield classification by integrating hyperspectral image with LiDAR data over urban areas. Journal of Applied Remote Sensing, 2014, 8(1):1-13.
张兵.智能遥感卫星系统.遥感学报, 2011, 15(3): 415-431.
Yang B, Yang M, Antonio P, et al. Dual-mode FPGA implementation of target and anomaly detection algorithms for real-time hyperspectral imaging. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2950-2961.
Hey T, Tansley S, Tolle K. The fourth paradigm: data-intensive scientific Discovery. Microsoft, 2009.
Schönberger V M, Cukier K. Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt, 2013.
Chi M, Antonio J P, Jon A, et al. Forward to the special issue on big data in remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10):4607-4609.
Stewart I D, Oke T R. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 2012, 93(12): 1879-1900.
Recommended Citation
Bing, Zhang
(2017)
"Current Status and Future Prospects of Remote Sensing,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 32
:
Iss.
7
, Article 12.
DOI: https://doi.org/10.16418/j.issn.1000-3045.2017.07.012
Available at:
https://bulletinofcas.researchcommons.org/journal/vol32/iss7/12