Bulletin of Chinese Academy of Sciences (Chinese Version)


the National Natural Science Foundation of China (NSFC) Initiative; microbes in hydrosphere; microbiomes; elemental cycling

Document Type



The hydrosphere includes oceans, lakes, rivers, glaciers, wetlands, groundwater, etc. It is home to over half of the microorganisms, such as bacteria, archaea, fungi, algae, viruses, on the Earth, and therefore harbors the largest environmental microbiome. Studies show that microorganisms in hydrosphere are the key drive in biogeochemical cycling of important elements on the Earth. Nevertheless, it remains to be fully understood as to how microorganisms serve the drive role (a key scientific issue of research on microbiome in hydrosphere). Recently, National Natural Science Foundation of China (NSFC) launched a Major Research Initiative titled 'Mechanisms Underlining Elemental Cycling on the Earth by Microorganisms in Hydrosphere' or 'Microbes in Hydrosphere' in short. This Initiative calls for systematic investigation into microbial community structures and their interaction with the environments, mechanisms of microbial transformation of substances and energy, and the ecological functions and contributions of microbial activities in representative habitats in hydrosphere. The ultimate goal of the Initiative is to offer a clear view on the mechanisms underlining carbon, nitrogen, and sulfur cycling on the Earth by microorganisms in hydrosphere. This article briefly reviews the background, major scientific questions, and implementation plan of the Initiative.

First page


Last Page





Bulletin of Chinese Academy of Sciences


Armbrust E V. Microbiology. Taking the pulse of ocean microbes. Science, 2014, 345(6193):134-135.

Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments. Nature, 1999, 398(6730): 802-805.

Strous M, Fuerst J A, Kramer E H, et al. Missing lithotroph identified as new planctomycete. Nature, 1999, 400(6743):446-449.

Prokopenko M G, Hirst M B, De Brabandere L, et al. Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia. Nature, 2013, 500(7461):194-198.

Strous M, Pelletier E, Mangenot S, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 2006, 440(7085):790-794.

Könneke M, Bernhard A E, de la Torre J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 2005, 437(7058):543-546.

Grossart H P, Frindte K, Dziallas C, et al. Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci USA, 2011, 108(49):19657-19661.

Bryant D A, Costas A M, Maresca J A, et al. Candidatus Chloracidobacterium thermophilum:an aerobic phototrophic Acidobacterium. Science, 2007, 317(5837):523-526.

Reigstad L J, Richter A, Daims H, et al. Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbial Ecol, 2008, 64(2):167-174.

Riesenfeld C S, Schloss P D, Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet, 2004, 38:525-552.

中国科学院海洋领域战略研究组.中国至2050年海洋科技发展路线图.北京:科学出版社, 2009.

Venter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304(5667):66-74.

Sunagawa S, Coelho L P, Chaffron S, et al. Structure and function of the global ocean microbiome. Science, 2015, 348(6237): 1261359.

Brum J R, Ignacio-Espinoza J C, Roux S, et al. Patterns and ecological drivers of ocean viral communities. Science, 2015, 348(6237):1261498.

de Vargas C, Audic S, Henry N, et al. Eukaryotic plankton diver-sity in the sunlit ocean. Science, 2015, 348(6237):1261605.

Villar E, Farrant G K, Follows M, et al. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science, 2015, 348(6237):1261447.

Lima-Mendez G, Faust K, Henry N, et al. Determinants of community structure in the global plankton interactome. Science, 2015, 348(6237):1262073.

Zhang G, Zhang F, Ding G, et al. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. ISEM J, 2012, 6(7):1336-1344.

Liu B, Ouyang S, Makarova K S, et al. A primase subunit essential for efficient primer synthesis by an archaeal eukaryotic-type primase. Nat Commun, 2015, 6:7300.

刘丛强.生物地球化学过程与地表物质循环--西南喀斯特流域浸蚀与生源要素循环.北京:科学出版社, 2007.

Huang S J, Wilhelm S W, Harvey H R, et al. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J, 2012, 6(2):285-297.

Jiao N Z, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter:Long-term carbon storage in the global ocean. Nat Rev Microbiol, 2010, 8(8):593-599.

Wang F P, Zhou H Y, Meng J, et al. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proc Natl Acad Sci USA, 2009, 106(12):4840-4845.

Meng J, Xu J, Qin D, et al. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISEM J, 2014, 8(3):650-659.

Lu Y, Conrad R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 2005, 309(5737):1088-1090.

Zhou J Z, Xue K, Xie J P, et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2011, 2:106-110.

Wu Q L, Zwart G, Wu J, et al. Submersed macrophytes play a key role in structuring bacterioplankton community composition in the large, shallow, subtropical Taihu Lake, China. Environ Microbiol, 2007, 9(11):2765-2774.

Jiang H, Dong H, Yu B, et al. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol, 2007, 9(10):2603-2621.