Bulletin of Chinese Academy of Sciences (Chinese Version)


biosensor; water pollution monitoring; enzyme; immuno; DNA; tissue; microorganism

Document Type



Biosensors have many applications. Biological and chemical samples can be detected by utilizing the specific recognition between biomolecules. This paper investigates and reviews the research and development of biosensors for water environment monitoring. Biosensors with different sensing mechanisms and materials, such as enzyme, immune, DNA, tissue, microorganism biosensors, as well as their applications for detecting various water pollution parameters are described.

First page


Last Page





Bulletin of Chinese Academy of Sciences


张先恩.生物传感器.北京:化学工业出版社, 2006.

Hondred J A, Breger J C, Garland N T, et al. Enhanced enzymatic activity from phosphotriesterase trimer gold nanoparticle bioconjugates for pesticide detection. Analyst, 2017, 142(17):3261-3271.

Turan J, Kesik M, Soylemez S, et al. An effective surface design based on a conjugated polymer and silver nanowires for the detection of paraoxon in tap water and milk. Sensors & Actuators B Chemical, 2016, 228:278-286.

Sigolaeva L V, Gladyr S Y, Mergel O, et al. Easy-preparable butyrylcholinesterase/microgel construct for facilitated organophosphate biosensing. Analytical Chemistry, 2017, 89(11):6091-6098.

Arjmand M, Saghafifar H, Alijanianzadeh M, et al. A sensitive tapered-fiber optical biosensor for the label-free detection of organophosphate pesticides. Sensors and Actuators B:Chemical, 2017, 249:523-532.

Wei M, Feng S. Amperometric determination of organophosphate pesticides using a acetylcholinesterase based biosensor made from nitrogen-doped porous carbon deposited on a boron-doped diamond electrode. Microchimica Acta, 2017, 184(9):3461-3468.

Caballero-Díaz E, Benítez-Martínez S, Valcárcel M. Rapid and simple nanosensor by combination of graphene quantum dots and enzymatic inhibition mechanisms. Sensors and Actuators B:Chemical, 2017, 240:90-99.

Sethuraman V, Muthuraja P, Raj A J, et al. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode. Biosensors & Bioelectronics, 2016, 84:112-119.

Sohail M, Adeloju S B. Nitrate biosensors and biological methods for nitrate determination. Talanta, 2016, 153:83-98.

Minami T, Sasaki Y, Minamiki T, et al. Selective nitrate detection by an enzymatic sensor based on an extended-gate type organic fieldeffect transistor. Biosensors & Bioelectronics, 2016, 81:87-91.

Ali M A, Jiang H, Mahal N K, et al. Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sensors and Actuators B:Chemical, 2017, 239:1289-1299.

Moyo M, Okonkwo J O, Agyei N M. An amperometric biosensor based on horseradish peroxidase immobilized onto maize tasselmulti-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution. Enzyme & Microbial Technology, 2014, 56(7490):28-34.

Tan I, Erhan E, Karagöz P, et al. Determination of mercury and nickel by amperometric biosensor prepared with thermostable lactate dehydrogenase. Transactions of Nonferrous Metals Society of China, 2011, 21(10):2332-2338.

Kuralay F, Yildiz O A. Inhibitive determination of Hg 2+ ion by an amperometric urea biosensor using poly(vinylferrocenium) film. Enzyme & Microbial Technology, 2007, 40(5):1156-1159.

Liu J, Xu X, Tang L, et al. Determination of trace mercury in compost extract by inhibition based glucose oxidase biosensor. Transactions of Nonferrous Metals Society of China (English Edition), 2009, 19(1):235-240.

Elsebai B, Ghica M E, Abbas M N, et al. Catalase based hydrogen peroxide biosensor for mercury determination by inhibition measurements. Journal of Hazardous Materials, 2017, 340:344-350.

Baeumner A J. Biosensors for environmental pollutants and food contaminants. Analytical & Bioanalytical Chemistry, 2003, 377(3):434-445.

Churchill R, Sheedy C, Yau K, et al. Evolution of antibodies for environmental monitoring:from mice to plants. Analytica Chimica Acta, 2002, 468(2):185-197.

Mehta J, Bhardwaj S K, Bhardwaj N, et al, Progress in the biosensing techniques for trace-level heavy metals. Biotechnology Advances, 2016, 34(1):47-60.

Guo Y, Liu R, Liu Y, et al. A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples. Science of the Total Environment, 2017, 613-614:783.

Belkhamssa N, Justino C I L, Santos P S M, et al., Label-free disposable immunosensor for detection of atrazine. Talanta, 2016, 146:430.

Monerris M J, Eramo F D, Arévalo F J, et al. Electrochemical immunosensor based on gold nanoparticles deposited on a conductive polymer to determine estrone in water samples. Microchemical Journal, 2016, 129:71-77.

Shu Q, Liu M, Ouyang H, et al. Label-free fluorescent immunoassay for Cu 2+ ion detection based on UV degradation of immunocomplex and metal ion chelates. Nanoscale, 2017, 228(34):425.

López A M, Pons J, Blake D A, et al. High sensitive goldnanoparticle based lateral flow Immunodevice for Cd 2+ detection in drinking waters. Biosensors & Bioelectronics, 2013, 47(28):190-198.

Xing C, Liu L, Song S, et al. Ultrasensitive immunochromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosensors & Bioelectronics, 2015, 66:445-453.

Jia S, Bian C, Tong J H, et al. Fiber-optic sensor based on plasmon coupling effects in gold nanoparticles core-satellites nanostructure for determination of mercury ions (Ⅱ). Chinese Journal of Analytical Chemistry, 2017, 45(6):785-790.

Zuo X, Zhang H, Zhu Q, et al. A dual-color fluorescent biosensing platform based on WS2 nanosheet for detection of Hg 2+ and Ag +. Biosensors & Bioelectronics, 2016, 85:464-470.

赵永席, 齐林, 杨卫军, 等.基于核酸切割酶与脱氧核酶的荧光循环放大系统检测铅(Ⅱ).分析化学, 2012, 40(8):1236-1240.

Hong M, Wang M, Wang J, et al. Ultrasensitive and selective electrochemical biosensor for detection of mercury (Ⅱ) ions by nicking endonuclease-assisted target recycling and hybridization chain reaction signal amplification. Biosensors & Bioelectronics, 2017, 94:19-23.

Arvand M, Mirroshandel A A. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Biosensors & Bioelectronics, 2017, 96:324-331.

Zourob M M, Eissa S H H. Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim. Analytical Chemistry, 2017, 89(5):3138-3145.

Ferrat L, Pergent-Martini C, Roméo M. Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality:application to seagrasses. Aquatic Toxicology, 2003, 65(2):187-204.

Tsopela A, Laborde A, Salvagnac L, et al, Development of a labon-chip electrochemical biosensor for water quality analysis based on microalgal photosynthesis. Biosensors & Bioelectronics, 2016, 79:568-573.

Harguinteguy C A, Schreiber R, Pignata M L. Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecological Indicators, 2013, 27:8-16.

Eissa S, Zourob M. Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim. Analytical Chemistry, 2017, 89(5):3138-3145.

Védrine C, Leclerc J C, Durrieu C, et al. Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosensors & Bioelectronics, 2003, 18(4):457-463.

Merkoçi A, Anik U, Çevik S, et al. Bismuth film combined with screen-printed electrode as biosensing platform for phenol detection. Electroanalysis, 2010, 22(13):1429-1436.

崔建升, 张静, 魏复盛.生化需氧量(BOD)测定技术进展.中国环境监测, 2006, 22(3):85-87.

李国刚, 王德龙.生化需氧量测定方法综述.中国环境监测, 2004, 20(2):54-57.

李华玲, 杜秀月, 冉敬文, 等.生化需氧量(BOD)测定方法进展.盐湖研究, 2005, 13(3):62-66.

Karube I, Matsunaga T, Mitsuda S, et al. Microbial electrode BOD sensors. Biotechnology & Bioengineering, 1977, 102(3):1535-1547.

张先恩, 王志通, 简浩然. BOD微生物传感器的研究.环境科学学报, 1986, 6(2):184-192.

Jia J, Tang M, Chen X, et al. Co-immobilized microbial biosensor for BOD estimation based on sol-gel derived composite material. Biosensors & Bioelectronics, 2003, 18(8):1023-1029.

Liu L, Shang L, Guo S, et al. Organic-inorganic hybrid material for the cells immobilization:Long-term viability mechanism and application in BOD sensors. Biosensors & Bioelectronics, 2009, 25(2):523-526.

Liu L, Zhang S, Xing L, et al. A co-immobilized mediator and microorganism mediated method combined pretreatment by TiO 2 nanotubes used for BOD measurement. Talanta, 2012, 93:314-319.

Liu L, Zhai J, Zhu C, et al. One-pot synthesis of 3-dimensional reduced graphene oxide-based hydrogel as support for microbe immobilization and BOD biosensor preparation. Biosensors & Bioelectronics, 2015, 63:483-489.

Liu C, Ma C, Yu D, et al. Immobilized multi-species based biosensor for rapid biochemical oxygen demand measurement. Biosensors & Bioelectronics, 2011, 26(5):2074-2079.

Liu C, Zhao H, Zhong L, et al. A biofilm reactor-based approach for rapid on-line determination of biodegradable organic pollutants. Biosensors & Bioelectronics, 2012, 34(1):77-82.

Liu L, Bai L, Yu D, et al. Biochemical oxygen demand measurement by mediator method in flow system. Talanta, 2015, 138:36-39.

Wang J, Zhang Y, Wang Y, et al. An innovative reactortype biosensor for BOD rapid measurement. Biosensors & Bioelectronics, 2010, 25(7):1705-1709.

Hooi K B, Ismaild A K, Ahamad R, et al. A redox mediated UME biosensor using immobilized Chromobacterium violaceum strain R1 for rapid biochemical oxygen demand measurement. Electrochimica Acta, 2015, 176:777-783.

Kashem M A, Suzuki M, Kimoto K, et al. An optical biochemical oxygen demand biosensor chip for environmental monitoring. Sensors and Actuators B:Chemical, 2015, 221:1594-1600.

Wang J, Li Y, Bian C, et al. Ultramicroelectrode array modified with magnetically labeled Bacillus subtilis, palladium nanoparticles and reduced carboxy graphene for amperometric determination of biochemical oxygen demand. Microchimica Acta, 2017, 184 (3):763-771.

Martinis E M, Escudero L B, Salvarezza R, et al. Liquid-liquid microextraction based on a dispersion of Pd nanoparticles combined with ETAAS for sensitive Hg determination in water samples. Talanta, 2013, 108(8):46-52.

Gao R, Hu Z, Chang X J, et al. Chemically modified activated carbon with 1-acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu(Ⅱ), Hg(Ⅱ) and Pb(Ⅱ) from water samples. Journal of Hazardous Materials, 2009, 172(1):324-329.

Neagu V, Luca C, Ştefan S, et al. Unconventional ion exchange resins and their retention properties for Hg 2+ ions. Reactive & Functional Polymers, 2007, 67(12):1433-1439.

Kamyabi M A, Aghaei A. A simple and selective approach for determination of trace Hg(Ⅱ) usingelectromembrane extraction followed by graphite furnace atomicabsorption spectrometry. Spectrochimica Acta Part B, 2017, 128:17-21.

赵佳, 郭玉高, 孙帅帅, 等.水体痕量重金属离子富集方法研究进展.天津化工, 2015, 29(1):15-18.

Vijayaraghavan K, Yun Y S. Bacterial biosorbents and biosorption. Biotechnology Advances, 2008, 26:266-291.

Alpat S K, Alpat S, Kutlu B, et al. Development of biosorptionbased algal biosensor for Cu(Ⅱ) using Tetraselmis chuii. Sensors and Actuators B:Chemical, 2008, 128(1):273-278.

Alpat S, Alpat S K, Çadırcı B H, et al. A novel microbial biosensor based on C ircinella, sp. modified carbon paste electrode and its voltammetric application. Sensors and Actuators B:Chemical, 2008, 134(1):175-181.

Yao H, Ramelow G J. Biomass-modified carbon paste electrodes for monitoring dissolved metal ions. Talanta, 1998, 45(6):1139-1146.

Ouangpipat W, Lelasattarathkul T, Dongduen C, et al. Bioaccumulation and determination of lead using treatedPennisetum-modified carbon paste electrode. Talanta, 2003, 61(4):455-464.

Fiol N, Torre F D L, Demeyere P, et al. Vegetable waste-based sensors for metal ion determination. Sensors and Actuators B:Chemical, 2007, 122(1):187-194.

田承云, 张国雄.微型电流式生物传感器.化学传感器, 1993, 13(1):16-27.

Rodrigues N P, Kimura H, Sakai Y, et al. Cell-based microfluidic biochip for electrochemical real-time monitoring of glucose and oxygen. Sensors and Actuators B:Chemical, 2008, 132(2):608-613.

Cortés-Salazar F, Beggah S, Meer J R V D M, et al. Electrochemical As(Ⅲ) whole-cell based biochip sensor. Biosensors & Bioelectronics, 2013, 47:237-242.

Fakhrullin R F, García-Alonso J, Paunov V N. A direct technique for preparation of magnetically functionalised living yeast cells. Soft Matter, 2010, 6(2):391-397.