Bulletin of Chinese Academy of Sciences (Chinese Version)
Keywords
neurotransmitter; high temporal and spatial resolution; vesicle release; nanoelectrode; electrochemical
Document Type
Article
Abstract
Currently, real time monitoring the release of neurotransmitters from living cells with high temporal and spatial resolution remains challenging. In recent years, quantitative analysis of neurotransmitter releasing has been achieved by developing different electrochemical monitoring techniques, and cell release patterns have been investigated. In addition, monitoring with high resolution and sensitivity can be achieved by modifying the electrode surface or regulating the electrode dimensions. The combining of different monitoring techniques can further improve the monitoring capability. This paper reviews the mechanism of electrochemical detection of neurotransmitter, the development of microelectrode and nanoelectrode for neurotransmitter detection, the coupling of electrochemical technology and imaging technology to realize the high temporal and spatial resolution. The paper also provides some outlooks in the future direction. Based on these reviews and future perspectives, taking the advantages of different monitoring techniques, the paper proposes the coupling among the nanoelectrode and imaging technology, as well as other monitoring techniques, aiming at greatly elevating the capability of nanoelectrode in neurotransmitter monitoring.
First page
1290
Last Page
1302
Language
Chinese
Publisher
Bulletin of Chinese Academy of Sciences
References
Borgonovo B, Cocucci E, Racchetti G, et al. Regulated exocytosis:a novel, widely expressed system. Nature Cell Biology, 2002, 4(12):955-962.
van der Vlist E J, Nolte H E, Stoorvogel W, et al. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nature Protocals, 2012, 7(7):1311-1326.
Kavalali E T. The mechanisms and functions of spontaneous neurotransmitter release. Nature Review Neuroscience, 2015, 16(1):5-16.
Sezgin E, Levental I, Mayor S, et al. The mystery of membrane organization:composition, regulation and roles of lipid rafts. Nature Review Molecular Cell Biology, 2017, 18(6):361-374.
Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nature Review Immunology, 2009, 9(8):581-593.
Grover A, Schmidt B F, Salter R D, et al. Genetically encoded pH sensor for tracking surface proteins through endocytosis. Angewandte Chemie International Edition, 2012, 51(20):4838-4842.
Salem N, Faúndez V, Horng J T, et al. A v-SNARE participates in synaptic vesicle formation mediated by the AP3 adaptor complex.Nature Neuroscience, 1998, 1(7):551-556.
Sprong H, Sluijs P V, Meer G V. How proteins move lipids and lipids move proteins. Nature Reviews Molecular Cell Biology, 2001, 2(7):504-513.
Zhou Q, Lai Y, Bacaj T, et al. Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis. Nature, 2015, 525(7567):62-67.
Fusco G, Pape T, Stephens A D, et al. Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nature Communications, 2017, 7:12563.
Roetne R J, Jacobsen H. Alzheimer's disease:from pathology to therapeutic approaches. Angewandte Chemie International Edition, 2009, 48(17):3030-3059.
Selkoe D J. Showing transmitters the door:synucleins accelerate vesicle release. Nature Neuroscience, 2017, 20(5):629-631.
Boulanger C M, Loyer X, Rautou P E, et al. Extracellular vesicles in coronary artery disease. Nature Review Cardiology, 2017, 14(5):259-272.
Buzas E I, Gyorgy B, Nagy G, et al. Emerging role of extracellular vesicles in inflammatory diseases. Nature Review Rheumatology, 2014, 10(6):356-364.
Kolter T, Sandhoff K. Sphingolipids-Their metabolic pathways and the pathobiochemistry of neurodegenerative diseases. Angewandte Chemie International Edition, 2010, 38(11):1532-1568.
Zhou L J, McInnes J, Wierda K, et al. Tau association with synaptic vesicles causes presynaptic dysfunction. Nature Communications, 2017, 8:15295.
Najafinobar N, Mellander L J, Kurczy M E, et al. Cholesterol alters the dynamics of release in protein independent cell models for exocytosis. Scientific Reports, 2016, 6:33702.
Mellander L J, Kurczy M E, Najafinobar N, et al. Two modes of exocytosis in an artificial cell. Scientific Reports, 2014, 4:3847.
Rohrbough J, Broadie K. Lipid regulation of the synaptic vesicle cycle. Nature Review Neuroscience, 2005, 6(2):139-150.
Bacia K. Intracellular transport mechanisms:Nobel Prize for Medicine 2013. Angewandte Chemie International Edition, 2013, 52(48):12486-12488.
Fernandez T F, Grover L M, Stephenson B A, et al. Vesicles in nature and the laboratory:elucidation of their biological properties and synthesis of increasingly complex synthetic vesicles. Angewandte Chemie International Edition, 2017, 56(12):3142-3160.
Flagmeier P, De S, Wirthensohn D C, et al. Ultrasensitive measurement of Ca 2+ influx into lipid vesicles induced by protein aggregates. Angewandte Chemie International Edition, 2017, 56(27):7750-7754.
McMahon H T, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Review Molecular Cell Biology, 2011, 12(8):517-533.
Rothman J E. The principle of membrane fusion in the cell (Nobel Lecture). Angewandte Chemie International Edition, 2014, 53(47):12676-12694.
Sudhof T C. The molecular machinery of neurotransmitter release (Nobel Lecture). Angewandte Chemie International Edition, 2014, 53(47):12696-12717.
Ahmed W W, Saif T A. Active transport of vesicles in neurons is modulated by mechanical tension. Scientific Reports, 2014, 4:4481.
Gruenberg J. The endocytic pathway:a mosaic of domains. Nature Reviews Molecular Cell Biology, 2001, 2(10):721-730.
Thery C, Zitvogel L, Amigorena S. Exosomes:composition, biogenesis and function. Nature Review Immunology, 2002, 2(8):569-579.
Bath B D, Michael D J, Trafton B J, et al. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Analytical Chemistry, 2000, 72(24):5994-6002.
Runnels P L, Joseph J D, Logman M J, et al. Effect of pH and surface functionalities on the cyclic voltammetric responses of carbon-fiber microelectrodes. Analytical Chemistry, 1999, 71(14):2782-2789.
Cahill P S, Walker Q D, Finnegan J M, et al. Microelectrodes for the measurement of catecholamines in biological systems. Analytical Chemistry, 1996, 68(18):3180-3186.
Wang Y, Amatore C. Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. PNAS, 2012, 109(29):11534-11539.
Chen R S, Huang W H, Tong H, et al. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes. Analytical Chemistry, 2003, 75(22):6341-6345.
Huang W H, Cheng W, Zhang Z, et al. Transport, location, and quantal release monitoring of single cells on a microfluidic device. Analytical Chemistry, 2004, 76(2):483-488.
Wang J H, Huang W H, Liu Y M, et al. Capillary electrophoresis immunoassay chemiluminescence detection of zeptomoles of bone morphogenic protein-2 in rat vascular smooth muscle cells. Analytical Chemistry, 2004, 76(18):5393-5398.
Bath B D, Martin H B, Wightman R M, et al. Dopamine adsorption at surface modified carbon-fiber electrodes. Langmuir, 2001, 17(22):7032-7039.
Hermans A, Seipel A T, Miller C E, et al. Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines. Langmuir the Acs Journal of Surfaces & Colloids, 2006, 22(5):1964-1969.
Hashemi P, Walsh P L, Guillot T S, et al. Chronically implanted, nafion-coated Ag/AgCl reference electrodes for neurochemical applications. ACS Chemical Neuroscience, 2011, 2(11):658-666.
Omiatek D M, Dong Y, Heien M L, et al. Only a fraction of quantal content is released during exocytosis as revealed by electrochemical cytometry of secretory vesicles. ACS chemical neuroscience, 2010, 1(3):234-245.
Li X C, Dunevall J, Ewing A G. Using single-cell amperometry to reveal how cisplatin treatment modulates the release of catecholamine transmitters during exocytosis. Angewandte Chemie International Edition, 2016, 55(31):9041-9044.
Ren L, Pour M D, Majdi S, et al. Zinc regulates chemicaltransmitter storage in nanometer vesicles and exocytosis dynamics as measured by amperometry. Angewandte Chemie International Edition, 2017, 56(18):4970-4975.
Spicer C D, Triemer T, Davis B G. Palladium-mediated cellsurface labeling. Journal of the American Chemical Society, 2012, 134(2):800-803.
Tokunaga T, Namiki S, Yamada K, et al. Cell surface-anchored fluorescent aptamer sensor enables imaging of chemical transmitter dynamics. Journal of the American Chemical Society, 2012, 134(23):9561-9564.
Liu Y, Zhang X, Chen W T, et al. Fluorescence turn-on folding sensor to monitor proteome stress in live cells. Journal of the American Chemical Society, 2015, 137(35):11303-11311.
Qiu L P, Zhang T, Jiang J H, et al. Cell membraneanchored biosensors for real-time monitoring of the cellular microenvironment. Journal of the American Chemical Society, 2014, 136(38):13090-13093.
Porterfield W B, Jones K A, McCutcheon D C, et al. A "Caged" luciferin for imaging cell-cell contacts. Journal of the American Chemical Society, 2015, 137(27):8656-8659.
Sasmal D K, Yadav R, Lu H P. Single-molecule patch-clamp FRET anisotropy microscopy studies of NMDA receptor ion channel activation and deactivation under agonist ligand binding in living cells. Journal of the American Chemical Society, 2016, 138(28):8789-8801.
Kruss S, Salem D P, Vukovic L, et al. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. PNAS, 2017, 114(8):1789-1794.
Liu J, Yin D Y, Wang S S, et al. Probing low-copy-number proteins in a single living cell. Angewandte Chemie International Edition, 2016, 55(42):13215-13218.
Pan R R, Xu M C, Jiang D C, et al. Nanokit for single-cell electrochemical analyses. PNAS, 2016, 113(41):11436-11440.
Park J H, Thorgaard S N, Zhang B, et al. Single particle detection by area amplification:single wall carbon nanotube attachment to a nanoelectrode. Journal of the American Chemical Society, 2013, 135(14):5258-5261.
Dick J E, Renault C, Kim B K, et al. Simultaneous detection of single attoliter droplet collisions by electrochemical and electrogenerated chemiluminescent responses. Angewandte Chemie International Edition, 2014, 53(44):11859-11862.
Dick J E, Hilterbrand A T, Boika A, et al. Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring. PNAS, 2015, 112(17):5303-5308.
Lebegue E, Anderson C M, Dick J E, et al. Electrochemical detection of single phospholipid vesicle collisions at a Pt ultramicroelectrode. Langmuir, 2015, 31(42):11734-11739.
Troyer K P, Wightman R M. Temporal separation of vesicle release from vesicle fusion during exocytosis. Journal of Biological Chemistry, 2002, 277(32):29101-29107.
Troyer K P, Wightman R M. Dopamine Transport into a Single Cell in a Picoliter Vial. Analytical Chemistry, 2002, 74(20):5370-5375.
Hochstetler S E, Puopolo M, Gustincich S, et al. Real-time amperometric measurements of zeptomole quantities of dopamine released from neurons. Analytical Chemistry, 2000, 72(3):489-496.
Xin Q, Wightman R M. Simultaneous detection of catecholamine exocytosis and Ca 2+ release from single bovine chromaffin cells using a dual microsensor. Analytical Chemistry, 1998, 70(9):1677-1681.
Wang P, Ge Z L, Pei H, et al. Quartz crystal microbalance studies on surface-initiated DNA hybridization chain reaction. Acta Chimica Sinica, 2012, 70(20):2127-2132.
Liu B, Ouyang X, Chao J, et al. Self-assembly of DNA origami using rolling circle amplification based DNA nanoribbons. Chinese Journal of Chemistry, 2014, 32(2):137-141.
Justin G J. Single entity electrochemistry progresses to cell counting. Angewandte Chemie International Edition, 2016, 55(42):12956-12958.
Sepunaru L, Sokolov S V, Holter J, et al. Electrochemical red blood cell counting:one at a time. Angewandte Chemie International Edition, 2016, 55(33):9768-9771.
Laforge F O, Carpino J, Rotenberg S A, et al. Electrochemical attosyringe. PNAS, 2007, 104(29):11895-11900.
Liu X Q, Savy A, Maurin S, et al. A dual functional electroactive and fluorescent probe for coupled measurements of vesicular exocytosis with high spatial and temporal resolution. Angewandte Chemie International Edition, 2017, 56(9):2366-2370.
Liu X W, Yang Y Z, Wang W, et al. Plasmonic-based electrochemical impedance imaging of electrical activities in single cells. Angewandte Chemie International Edition, 2017, 56(30):8855-8859.
Takahashi Y, Shevchuk A I, Novak P, et al. Topographical and electrochemical nanoscale imaging of living cells using voltageswitching mode scanning electrochemical microscopy. PNAS, 2012, 109(29):11540-11545.
Abe H, Ino K, Li C, et al. Electrochemical imaging of dopamine release from three-dimensional-cultured PC12 cells using large-scale integration-based amperometric sensors. Analytical Chemistry, 2015, 87(12):6364-6370.
Dong H, Zhang L M, Liu W, et al. Label-free electrochemical biosensor for monitoring of chloride ion in an animal model of Alzhemier's disease. ACS Chemical Neuroscience, 2017, 8(2):339-346.
Herr N R, Belle A M, Daniel K B, et al. Probing presynaptic regulation of extracellular dopamine with iontophoresis. ACS Chemical Neuroscience, 2010, 1(9):627-638.
Kile B M, Walsh P L, McElligott Z A, et al. Optimizing the temporal resolution of fast-scan cyclic voltammetry. Chemical Neuroscience, 2012, 3(4):285-292.
Rice M E, Oke A F, Bradberry C W, et al. Simultaneous voltammetric and chemical monitoring of dopamine release in situ. Brain Research, 1985, 340(1):151-155
Omiatek D M, Bressler A J, Cans A S, et al. The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Scientific Reports, 2012, 3(3):1447.
Dunevall J, Fathali H, Najafinobar N, et al. Characterizing the catecholamine content of single mammalian vesicles by collisionadsorption events at an electrode. Journal of the American Chemical Society, 2015, 137(13):4344-4346.
Huang W H, Pang D W, Tong H, et al. A method for the fabrication of low-noise carbon fiber nanoelectrodes. Analytical Chemistry, 2001, 73(5):1048-1052.
Wu W Z, Huang W H, Wang W, et al. Monitoring dopamine release from single living vesicles with nanoelectrodes. Journal of the American Chemical Society, 2005, 127(25):8914-8915.
Strein T G, Ewing A G. Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer. Analytical Chemistry, 1992, 64(13):1368-1373.
Malinski T, Taha Z. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature, 1992, 358(6388):676-678.
Dernick G, Gong L W, Tabares L, et al. Patch amperometry:highresolution measurements of single-vesicle fusion and release. Nature Methods, 2005, 2(9):699-708.
Hashemi P, Dankoski E C, Petrovic J, et al. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Analytical Chemistry, 2009, 81(22):9462.
Hashemi P, Dankoski E C, Wood K M, et al. In vivo electrochemical evidence for simultaneous 5-HT and histamine release in the rat substantia nigra pars reticulata following medial forebrain bundle stimulation. Journal of Neurochemistry, 2011, 118(5):749-759.
Zachek M K, Takmakov P, Moody B, et al. Simultaneous decoupled detection of dopamine and oxygen using pyrolyzed carbon microarrays and fast-scan cyclic voltammetry. Analytical Chemistry, 2009, 81(15):6258-6265.
Zachek M K, Takmakov P, Park J, et al. Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo. Biosensors and Bioelectronics, 2010, 25(5):1179-1185.
Parent K L, Hill D F, Crown L M, et al. Platform to enable combined measurement of dopamine and neural activity. Analytical Chemistry, 2017, 89(5):2790-2799.
Zhang L M, Liu F L, Sun X M, et al. Engineering carbon nanotube fiber for real-time quantification of ascorbic acid levels in a live rat model of Alzheimer's disease. Analytical Chemistry, 2017, 89(3):1831-1837.
Rodeberg N T, Sandberg S G, Johnson J A, et al. Hitchhiker's guide to voltammetry:acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chemical Neuroscience, 2017, 8(2):221-234.
Rey S A, Smith C A, Fowler M W, et al. Ultrastructural and functional fate of recycled vesicles in hippocampal synapses. Nature Communications, 2015, 6:8043.
Giuliana F, Tillmann P, Stephens A D, et al. Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nature Communications, 2016, 7:12563.
Hinckelmann M V, Virlogeux A, Niehage C, et al. Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport. Nature Communications, 2016, 7:13233.
Staal R G, Mosharov E V, Sulzer D. Dopamine neurons release transmitter via a flickering fusion pore. Nature Neuroscience, 2004, 7(4):341-346.
Li Y T, Zhang S H, Wang L, et al. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angewandte Chemie International Edition, 2014, 53(46):12456-12460.
Liu J T, Hu L S, Liu Y L, et al. Real-time monitoring of auxin vesicular exocytotic efflux from single plant protoplasts by amperometry at microelectrodes decorated with nanowires. Angewandte Chemie International Edition, 2014, 53(10):2643-2647.
Li Y T, Zhang S H, Wang X Y, et al. Real-time monitoring of discrete synaptic release events and excitatory potentials within self-reconstructed neuromuscular junctions. Angewandte Chemie International Edition, 2015, 54(32):9313-9318.
Cheng W, Compton R G. Investigation of single-drugencapsulating liposomes using the nano-impact method. Angewandte Chemie International Edition, 2014, 53(50):13928-13930.
Najafinobar N, Lovric J, Majdi S, et al. Excited fluorophores enhance the opening of vesicles at electrode surfaces in vesicle electrochemical cytometry. Angewandte Chemie International Edition, 2016, 55(48):15081-15085.
Cans A S, Wittenberg N, Eves D, et al. Amperometric detection of exocytosis in an artificial synapse. Analytical Chemistry, 2003, 75(16):4168-4175.
Anderson B B, Chen G Y, Gutman D A, et al. Demonstration of two distributions of vesicle radius in the dopamine neuron of Planorbis corneus from electrochemical data. Journal of Neuroscience Methods, 1999, 88(2):153-161.
Anderson B B, Zerby S E, Ewing A G. Calculation of transmitter concentration in individual PC12 cell vesicles with electrochemical data and a distribution of vesicle size obtained by electron microscopy. Journal of Neuroscience Methods, 1999, 88(2):163-170.
Wightman R M, Jankowski J A, Kennedy R T, et al. Temporally resolved catecholamine spikes correspond to sigle vesicle release from individual chromaffin cells. PNAS, 1991, 88(23):10754-10758.
Heinze J. Ultramicroelectrodes in electrochemistry. Angewandte Chemie International Edition, 1993, 32(9):1268-1288.
Mosharov E V, Sulzer D. Analysis of exocytotic events recorded by amperometry. Nature Methods, 2005, 2(9):651-658.
Majdi S, Berglund E C, Dunevall J, et al. Electrochemical measurements of optogenetically stimulated quantal amine release from single nerve cell varicosities in Drosophila larvae. Angewandte Chemie International Edition, 2015, 127(46):13609-13612.
Li X C, Majdi S, Dunevall J, et al. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angewandte Chemie International Edition, 2015, 54(41):11978-11982.
Jena B K, Percival S J, Zhang B. Au disk nanoelectrode by electrochemical deposition in a nanopore. Analytical Chemistry, 2010, 82(15):6737-6743.
Li Y X, Bergman D, Zhang B. Preparation and electrochemical response of 1-3 nm Pt disk electrodes. Analytical Chemistry, 2009, 81(13):5496-5502.
Liu Y Z, Li M N, Zhang F, et al. Development of Au disk nanoelectrode down to 3 nm in radius for detection of dopamine release from a single cell. Analytical Chemistry, 2015, 87(11):5531-5538.
Gholizadeh A, Shahrokhian S, Iraji zad A, et al. Fabrication of sensitive glutamate biosensor based on vertically aligned CNT nanoelectrode array and investigating the effect of CNTs density on the electrode performance. Analytical Chemistry, 2012, 84(14):5932-5938.
Lu N, Gao A R, Dai P F, et al. The application of silicon nanowire field-effect transistor-based biosensors in molecular diagnosis. Chinese Journal, 2015, 61(4-5):442-452.
Zhu D, Zuo X L, Fan C H. Fabrication of nanometer-sized gold flower microelectrodes for electrochemical biosensing applications. Scientia Sinica, 2015, 45(11):1214-1219.
Bergner S, Palatzky P, Wegener J, et al. High-resolution imaging of nanostructured Si/SiO 2 substrates and cell monolayers using scanning electrochemical microscopy. Electroanalysis, 2011, 23(1):196-200.
Koch J A, Baur M B, Woodall E L, et al. Alternating current scanning electrochemical microscopy with simultaneous fast-scan cyclic voltammetry. Analytical Chemistry, 2012, 84(21):9537-9543.
Recommended Citation
Yueyue, Zhang; Xiaolei, Zuo; and Chunhai, Fan
(2017)
"Electrochemical Sensing of Neurotransmitters with High Temporal and Spatial Resolution,"
Bulletin of Chinese Academy of Sciences (Chinese Version): Vol. 32
:
Iss.
12
, Article 3.
DOI: https://doi.org/10.16418/j.issn.1000-3045.2017.12.003
Available at:
https://bulletinofcas.researchcommons.org/journal/vol32/iss12/3