Bulletin of Chinese Academy of Sciences (Chinese Version)


research fronts; nanoscience and technology; solar cells; nanocatalysis; biomimetic nanopores

Document Type



ESI database discovered research fronts in science through co-citation clustering method, each front consisted of a group of highly cited papers (Top 1%) that have been co-cited above a set threshold of similarity strength and their associated citing papers. This paper identified 1 391 research fronts related to nanoscience and technology from all 11 814 research fronts in ESI database by literature search and expert identification. Further, these research fronts were categorized into several research themes by expert identification. This paper focused on four research themes (solar cells, biomimetic nanopores, nanocatalysis and measurement and characterization), comparing the performance of producing highly cited papers among competitive countries and revealing the excellent research teams and well-performed research fronts of China.

First page


Last Page





Bulletin of Chinese Academy of Sciences


中国科学院科技战略咨询研究院. 2016研究前沿发布暨研讨会在中科院举行. [2016-11-1]. http://www.casaid.cn/ttxw1/zlyjytt/201706/t20170617_4813910.html

边文越, 李泽霞, 冷伏海.构建包含知识元分析的科技前沿情报分析框架——以研究甲烷直接制乙烯为例.图书情报工作, 2016, 60(10):87-94.

Arora S K, Porter A L, Youtie J, et al. Capturing new developments in an emerging technology:an updated search strategy for identifying nanotechnology research outputs. Scientometrics, 2013, 95(1):351-370.

王小梅, 邓启平, 李国鹏, 等. ESI研究前沿的科学图谱及在纳米领域的应用.图书情报工作, 2017, 61(12):106-112.

Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17):6050-6051.

Im J H, Lee C R, Lee J W, et al. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale, 2011, 3(10), 4088-4093.

Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107):643-647.

Burschka J, Pellet N, Moon S, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499 (7458):316-319.

Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240), 1234-1237.

Chen W, Wu Y Z, Yue Y F, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350(6263):944-948.

中国科学院科技战略咨询研究院, 中国科学院文献情报中心, 英国科睿唯安. 2016研究前沿及分析解读.北京:科学出版社, 2017, 44.

Lin Y, Zhao F, He Q, et al. High-performance electron acceptor with thienyl side chains for organic photovoltaics. J Am Chem Soc, 2016, 138 (14):4955-4961.

中国科学院. 化学所在非富勒烯型聚合物太阳能电池研究中取得系列进展. [2016-7-1]. http://www.cas.cn/syky/201607/t20160701_4566879.shtml.

Gao L, Zhang Z, Xue L, et al. All-Polymer Solar Cells Based on Absorption-Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%. Advanced Materials, 2016, 28 (9):1884-1890.

南开大学新闻网. 南开团队有机太阳能电池研究获重大突破光电转化效率达12. 7%. [2016-12-14]. http://news.nankai.edu.cn/nkyw/system/2016/12/14/000310835.shtml.

Ip A H, Thon S M, Hoogland S, et al. Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology, 2012, 7:577-582.

Semonin O E, Luther J M, Choi S, et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 2011, 334(6062):1530-1533.

Pan Z, Zhao K, Wang J, et al. Near infrared absorption of CdSe xTe 1-x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. ACS Nano, 2013, 7(6):5215-5222.

Du J, Du Z, Hu J, et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J Am Chem Soc, 2016, 138(12):4201-4209.

Clarke J, Wu H, Jayasinghe L, et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnology, 2009, 4:265-270.

Derringtona I M, Butlera T Z, Collins M D, et al. Nanopore DNA sequencing with MspA. PNAS, 2009, 107(37):16060-16065.

Manrao E A, Derrington I M, Laszlo A H, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nature Biotechnology, 2012, 30:349-353.

Cherf G M, Lieberman K R, Rashid H, et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nature Biotechnology, 2012, 30:344-348.

Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane. Nature, 2010, 467(7312):190-193.

Plesa C, Kowalczyk S W, Zinsmeester R, et al. Fast translocation of proteins through solid state nanopores. Nano Lett, 2013, 13(2):658-663.

Wanunu M, Dadosh T, Ray V, et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature Nanotechnology, 2010, 5(11):807-814.

Ashton P M, Nair S, Dallman T, et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nature Biotechnology, 2015, 33(3):296-300.

中国科学院大连化学物理研究所. 我所单原子催化研究取得新进展. [2017-01-03]. http://www.dicp.ac.cn/xwzx/kjdt/201612/t20161228_4728792.html.

中国科学院. 2015科学发展报告.北京:科学出版社, 2015, 205.

新华社. 我国煤化工研究取得里程碑式突破煤制烯烃将告别高耗水. [2016-03-04]. http://news.xinhuanet.com/2016-03/04/c_1118235820.htm.

中国科学院上海高等研究院. 中科院上海高研院合成气直接制烯烃研究获重大突破. [2016-10-06]. http://www.sari.cas.cn/xwzx/ttxw/201610/t20161003_4672665.html.

Liang Y, Li Y, Wang H, et al. Co 3O 4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 2011, 10 (10):780-786.

中国科大新闻网. 我校谢毅院士领衔团队成果登2016年度中国科学十大进展榜首. [2017-02-21] http://news.ustc.edu.cn/xwbl/201702/t20170221_267943.html.

Li Q, Guo B, Yu J, et al. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc, 133(28):10878-10884.

Balasubramanian G, Chan I Y, Kolesov R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 2008, 455(7213):648-651.

Shi F, Zhang Q, Wang P, et al. Single-protein spin resonance spectroscopy under ambient conditions. Science, 2015, 347(6226):1135-1138.

Huang J Y, Zhong L, Wang C M, et al. In situ observation of the electrochemical lithiation of a single SnO 2 nanowire electrode. Science, 2010, 330(6010):1515-1520.