•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

arable land health, non-agriculture, non-grain, marginalization, fragmentation, ecological degradation

Document Type

Geographical Landscape on Building of a Beautiful China and Its Development Pathway

Abstract

Understand the cropland use situation, analyze management countermeasures, and explore the regional suitable cropland use mode are important prerequisites for the implementation of the strictest protection of cultivated land strategy with Chinese characteristics. At present, the cropland resource utilization in China is facing the five issues of non-agricultural, non-grain, fragmentation, marginalization, and ecological degradation. This study estimates the spatial-temporal changes of these cropland use issues in China, analyzes the challenges of cropland use governance from the aspects of complex driving factors, phase characteristics, cognitive differences of responsible subjects, and dynamic changes of external factors. On this basis, the countermeasures of cropland use are put forward to provide insights for building China into a more beautiful country with harmonious development between humans and nature.

First page

1962

Last Page

1976

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 Rosegrant M W, Cline S A. Global food security: Challenges and policies. Science, 2003, 302: 1917-1919.

2 郧文聚, 汤怀志, 桑玲玲. 树立耕地系统认知,完善最严格耕保制度. 中国土地, 2022, (5): 4-7. Yun W J, Tang H Z, Sang L L. Establish a systematic understanding of cultivated land and improve the strictest tillage and protection system. China Land, 2022, (5): 4-7. (in Chinese)

3 尹飞, 毛任钊, 傅伯杰, 等. 农田生态系统服务功能及其形成机制. 应用生态学报, 2006, 17(5): 929-934. Yin F, Mao R Z, Fu B J, et al. Farmland ecosystem service and its formation mechanism. Chinese Journal of Applied Ecology, 2006, 17(5): 929-934. (in Chinese)

4 周健民. 我国耕地资源保护与地力提升. 中国科学院院刊, 2013, 28(2): 269-274. Zhou J M. Protection of arable land resources and increase of soil productivity in China. Bulletin of Chinese Academy of Sciences, 2013, 28(2): 269-274. (in Chinese)

5 Valujeva K, O’sullivan L, Gutzler C, et al. The challenge of managing soil functions at multiple scales: An optimisation study of the synergistic and antagonistic trade-offs between soil functions in Ireland. Land Use Policy, 2016, 58: 335-347.

6 Kong X B. China must protect high-quality arable land. Nature, 2014, 506: 7.

7 Deng X Z, Huang J K, Rozelle S, et al. Impact of urbanization on cultivated land changes in China. Land Use Policy, 2015, 45: 1-7.

8 Ye S J, Song C Q, Kuzyakov Y, et al. Preface: Arable land quality: Observation, estimation, optimization, and application. Land, 2022, 11(6): 947.

9 Wan C J, Kuzyakov Y, Cheng C X, et al. A soil sampling design for arable land quality observation by using SPCOSA–CLHS hybrid approach. Land Degradation & Development, 2021, 32(17): 4889-4906.

10 叶思菁, 宋长青, 程锋, 等. 中国耕地健康产能综合评价与试点评估研究. 农业工程学报, 2019, 35(22): 66-78. Ye S J, Song C Q, Cheng F, et al. Cultivated land health-productivity comprehensive evaluation and its pilot evaluation in China. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 66-78. (in Chinese)

11 徐建明, 孟俊, 刘杏梅, 等. 我国农田土壤重金属污染防治与粮食安全保障. 中国科学院院刊, 2018, 33(2): 153-159. Xu J M, Meng J, Liu X M, et al. Control of heavy metal pollution in farmland of China in terms of food security. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 153-159. (in Chinese)

12 郧文聚, 宇振荣. 中国农村土地整治生态景观建设策略. 农业工程学报, 2011, 27(4): 1-6. Yun W J, Yu Z R. Ecological landscaping strategy of rural land consolidation in China. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(4): 1-6. (in Chinese)

13 叶思菁, 宋长青, 高培超, 等. 地理空间视角下耕地资源新认知体系构建. 农业工程学报, 2023, 39(9): 225-240. Ye S J, Song C Q, Gao P C, et al. Construction of the new cognitive system for arable land resources from geospatial perspective. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(9): 225-240. (in Chinese)

14 蔡运龙, 霍雅勤. 耕地非农化的供给驱动. 中国土地, 2002, (7): 20-22. Cai Y L, Huo Y Q. Supply-driven farmland conversion. China Land, 2002, (7): 20-22. (in Chinese)

15 曲福田, 陈江龙, 陈雯. 农地非农化经济驱动机制的理论分析与实证研究. 自然资源学报, 2005, 20(2): 231-241 Qu F T, Chen J L, Chen W. Theoretical and empirical study on the land conversion economic driving forces. Journal of Natural Resources, 2005, 20(2): 231-241. (in Chinese)

16 易小燕, 陈印军. 户转入耕地及其“非粮化”种植行为与规模的影响因素分析——基于浙江、河北两省的农户调查数据. 中国农村观察, 2010, (6): 2-10. Yi X Y, Chen Y J. Analysis on the influencing factors of farmers’ transfer to cultivated land and their non-grain planting behavior and scale—Based on the survey data of farmers in Zhejiang and Hebei provinces. China Rural Survey, 2010, (6): 2-10. (in Chinese)

17 谭淑豪, 曲福田, 尼克·哈瑞柯. 土地细碎化的成因及其影响因素分析. 中国农村观察, 2003, (6): 24-30. Tan S H, Qu F T, Nike H. The causes of land fragmentation and its influencing factors. China Rural Survey, 2003, (6): 24-30. (in Chinese)

18 吕晓, 黄贤金, 钟太洋, 等. 中国农地细碎化问题研究进展. 自然资源学报, 2011, 26(3): 530-540. Lü X, Huang X J, Zhong T Y, et al. Review on the research of farmland fragmentation in China. Journal of Natural Resources, 2011, 26(3): 530-540. (in Chinese)

19 李秀彬, 赵宇鸾. 森林转型、农地边际化与生态恢复. 中国人口·资源与环境, 2011, 21(10): 91-95. Li X B, Zhao Y L. Forest transition, agricultural land marginalisation and ecological restoration. China Population, Resources and Environment, 2011, 21(10): 91-95. (in Chinese)

20 刘成武, 李秀彬. 对中国农地边际化现象的诊断——以三大粮食作物生产的平均状况为例. 地理研究, 2006, 25(5): 895-904. Liu C W, Li X B. Diagnosis on the marginalization of arable land use in China. Geographical Research, 2006, 25(5): 895-904. (in Chinese)

21 张兴义, 隋跃宇, 宋春雨. 农田黑土退化过程. 土壤与作物, 2013, 2(1): 1-6. Zhang X Y, Sui Y Y, Song C Y. Degradation process of arable mollisols. Soils and Crops, 2013, 2(1): 1-6. (in Chinese)

22 徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施. 中国科学院院刊, 2018, 33(2): 160-167. Xu R K, Li J Y, Zhou S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 160-167. (in Chinese)

23 国土资源部, 国家统计局, 国务院第二次全国土地调查领导小组办公室. 关于第二次全国土地调查主要数据成果的公报. 国土资源通讯, 2014, (1): 29-31. Ministry of Land and Resources, State Statistics Bureau, Office of the Second National Land Survey Leading Group of the State Council. Major data bulletin of the second National Land Survey. National Land & Resources Information, 201, 4(1): 29-31. (in Chinese)

24 国务院第三次全国国土调查领导小组办公室, 自然资源部, 国家统计局. 第三次全国国土调查主要数据公报. 自然资源通讯, 2021, (17): 7-8. Office of the Third National Land Survey Leading Group of the State Council, Ministry of Natural Resources, State Statistics Bureau. Major data bulletin of the third National Land Survey. National Land & Resources Information, 2021, (17): 7-8. (in Chinese)

25 Ye S J, Ren S Y, Song C Q, et al. Spatial patterns of county-level arable land productive-capacity and its coordination with land-use intensity in the mainland of China. Agriculture, Ecosystems & Environment, 2022, 326: 107757.

26 汤怀志, 桑玲玲, 郧文聚. 我国耕地占补平衡政策实施困境及科技创新方向. 中国科学院院刊, 2020, 35(5): 637-644. Tang H Z, Sang L L, Yun W J. China’s cultivated land balance policy implementation dilemma and direction of scientific and technological innovation. Bulletin of Chinese Academy of Sciences, 2020, 35(5): 637-644. (in Chinese)

27 Zuo L J, Zhang Z X, Carlson K M, et al. Progress towards sustainable intensification in China challenged by land-use change. Nature Sustainability, 2018, 1(6): 304-313.

28 Liu C Y, Song C Q, Ye S J, et al. Estimate provincial-level effectiveness of the arable land requisition-compensation balance policy in mainland China in the last 20 years. Land Use Policy, 2023, 131: 106733.

29 张藕香, 姜长云. 不同类型农户转入农地的“非粮化”差异分析. 财贸研究, 2016, 27(4): 24-31. Zhang O X, Jiang C Y. Analysis on differences of “non-grain” of different types farmers in transfer-in farmland. Finance and Trade Research, 2016, 27(4): 24-31. (in Chinese)

30 Manjunatha A V, Anik A R, Speelman S, et al. Impact of land fragmentation, farm size, land ownership and crop diversity on profit and efficiency of irrigated farms in India. Land Use Policy, 2013, 31: 397-405.

31 刘涛, 曲福田, 金晶, 等. 土地细碎化、土地流转对农户土地利用效率的影响. 资源科学, 2008, 30(10): 1511-1516. Liu T, Qu F T, Jin J, et al. Impact of land fragmentation and land transfer on farmer’s land use efficiency. Resources Science, 2008, 30(10): 1511-1516. (in Chinese)

32 Liu J, Jin X B, Xu W Y, et al. Influential factors and classification of cultivated land fragmentation, and implications for future land consolidation: A case study of Jiangsu Province in Eastern China. Land Use Policy, 2019, 88: 104185.

33 王学, 徐晓凡. 中国耕地景观细碎度时空变化特征及其影响因素. 农业工程学报, 2022, 38(16): 11-20. Wang X, Xu X F. Spatiotemporal characteristics and influencing factors of landscape fragmentation of cultivated land in China. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 11-20. (in Chinese)

34 宋小青, 欧阳竹. 耕地多功能内涵及其对耕地保护的启示. 地理科学进展, 2012, 31(7): 859-868. Song X Q, Ouyang Z. Connotation of multifunctional cultivated land and its implications for cultivated land protection. Progress in Geography, 2012, 31(7): 859-868. (in Chinese)

35 李升发, 李秀彬. 中国山区耕地利用边际化表现及其机理. 地理学报, 2018, 73(5): 803-817. Li S F, Li X B. Economic characteristics and the mechanism of farmland marginalization in mountainous areas of China. Acta Geographica Sinica, 2018, 73(5): 803-817. (in Chinese)

36 张学珍, 赵彩杉, 董金玮, 等. 1992—2017年基于荟萃分析的中国耕地撂荒时空特征. 地理学报, 2019, 74(3): 411-420. Zhang X Z, Zhao C S, Dong J W, et al. Spatio-temporal pattern of cropland abandonment in China from 1992 to 2017: A Meta-analysis. Acta Geographica Sinica, 2019, 74(3): 411-420. (in Chinese)

37 Ye S J, Song C Q, Shen S, et al. Spatial pattern of arable land-use intensity in China. Land Use Policy, 2020, 99: 104845.

38 Ye S J, Song C Q, Gao P C, et al. Visualizing clustering characteristics of multidimensional arable land quality indexes at the county level in the mainland of China. Environment and Planning A: Economy and Space, 2022, 54(2): 222-225.

39 孙玉芳, 李想, 张宏斌, 等. 农业景观生物多样性功能和保护对策. 中国生态农业学报, 2017, 25(7): 993-1001. Sun Y F, Li X, Zhang H B, et al. Functions and countermeasures of biodiversity conservation in agricultural landscapes: A review. Chinese Journal of Eco-Agriculture, 2017, 25(7): 993-1001. (in Chinese)

40 刘威尔, 张鑫, 张娟, 等. 农田缓冲带规划建设与天敌保护效果研究. 中国生态农业学报, 2017, 25(2): 172-179. Liu W E, Zhang X, Zhang J, et al. Farmland buffer strip planning, construction and protective effect on related natural enemy. Chinese Journal of Eco-Agriculture, 2017, 25(2): 172-179. (in Chinese)

41 Ren S Y, Song C Q, Ye S J, et al. The spatiotemporal variation in heavy metals in China’s farmland soil over the past 20 years: A meta-analysis. Science of the Total Environment, 2022, 806: 150322.

42 张济舟, 郑伟伟, 夏显力. 耕地“非粮化”:政策回溯、形成机理及调控策略. 土地科学动态, 2022, (2): 16-20. Zhang J Z, Zheng W W, Xia X L. Cropland “non-grain”: Policy backtracking, formation mechanism and control strategy. Tudi Kexue Dongtai, 2022, (2): 16-20. (in Chinese)

43 杨翠红, 林康, 高翔, 等. “十四五”时期我国粮食生产的发展态势及风险分析. 中国科学院院刊, 2022, 37(8): 1088-1098. Yang C H, Lin K, Gao X, et al. Analysis on development and risks of China’s food production during 14th Five-year Plan period. Bulletin of Chinese Academy of Sciences, 2022, 37(8): 1088-1098. (in Chinese)

44 林而达, 许吟隆, 蒋金荷, 等. 气候变化国家评估报告(Ⅱ): 气候变化的影响与适应. 气候变化研究进展, 2006, 2(2): 51-56. Lin E D, Xu Y L, Jiang J H, et al. National Assessment Report of Climate Change (Ⅱ): Climate change impacts and adaptation. Advances in Climate Change Research, 2006, 2(2): 51-56. (in Chinese)

45 Ye S J, Zhu D H, Yao X C, et al. Development of a highly flexible mobile GIS-based system for collecting arable land quality data. IEEE J-STARS, 2014, 7(11): 4432-4441.

46 叶思菁, 朱德海, 姚晓闯, 等. 基于移动GIS的作物种植环境数据采集技术. 农业机械学报, 2015, 46(9): 325-334. Ye S J, Zhu D H, Yao X C, et al. Mobile GIS based approach for collection of crop planting environment data. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 325-334. (in Chinese)

47 叶思菁, 张超, 王媛, 等. GF-1遥感大数据自动化正射校正系统设计与实现. 农业工程学报, 2017, 33(S1): 266-273. Ye S J, Zhang C, Wang Y, et al. Design and implementation of automatic orthorectification system based on GF-1 big data. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(S1): 266-273. (in Chinese)

48 Ye S J, Liu D Y, Yao X C, et al. RDCRMG: A raster dataset clean & reconstitution multi-grid architecture for remote sensing monitoring of vegetation dryness. Remote Sensing, 2018, 10(9): 1376.

Share

COinS