•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

ocean, observation and exploration equipment, nuclear energ, nuclear safety

Document Type

Ocean Observation and Security Assurance Technology

Abstract

The ocean is essential to country's strategic interests and common destiny of mankind, and therefore equipment of various kinds is urgently needed for all-around and multi-dimensional ocean observation and exploration. This article brief introduced the two technological approaches of nuclear energy supply for underwater observation and exploration equipment and relevant exchange technologies of nuclear heat to electric power, quantitatively summarized the applicability of nuclear energy supply on all kinds of equipment, discussed the nuclear safety issues thereon, and then recommended that the technology research of radioisotope fabrication and separation and the construction of relevant facility, the development of individual reactor and the construction of relevant common facility, the technology research of thermoelectric conversion, and the research of relevant nuclear safety issues, should be special supported.

First page

888

Last Page

897

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 Otsubo A, Takahashi M. Design study of PbBi- and NaKcooled small deep sea fast reactors. Progress in Nuclear Energy, 2005, 47(1/4):202-211.

2 冯景祥, 姚尧, 潘峰, 等. 国外水下无人装备研究现状及发展趋势. 舰船科学技术, 2021, 43(23):1-8.

Feng J X, Yao Y, Pan F, et al. Existence and development trend of underwater unmanned equipment in foreign countries. Ship Science and Technology, 2021, 43(23):1-8. (in Chinese)

3 杨波, 刘烨瑶, 廖佳伟. 载人潜水器——面向深海科考和海洋资源开发利用的"国之重器". 中国科学院院刊, 2021, 36(5):622-631.

Yang B, Liu Y Y, Liao J W. Manned submersibles-Deepsea scientific research and exploitation of marine resources. Bulletin of Chinese Academy of Sciences, 2021, 36(5):622- 631. (in Chinese)

4 钱东, 唐献平, 赵江. UUV技术发展与系统设计综述. 鱼雷技术, 2014, 22(6):401-414.

Qian D, Tang X P, Zhao J. Overview of technology development and system design of UUVs. Torpedo Technology, 2014, 22(6):401-414. (in Chinese)

5 朱安文, 刘磊, 马世俊, 等. 空间核动力在深空探测中的应用及发展综述. 深空探测学报, 2017, 4(5):397-404.

Zhu A W, Liu L, Ma S J, et al. An overview of the use and development of nuclear power system in deep space exploration. Journal of Deep Space Exploration, 2017, 4(5):397-404. (in Chinese)

6 Brainard J. Voyager 2 heads for the stars. Science, 2018, 362:1220.

7 Moseley H. The attainment of high potentials by the use of Radium. Proceedings of the Royal Society. Series A, Containing Papers of a Mathematical and Physical Character, 1913, 88:471-476.

8 Tonelli A D, Secord T C. Auxiliary power generating system for a large space laboratory. Progress in Astronautics and Rocketry, 1966, 16:299-322.

9 Furlong R R, Wahlquist E J. U.S. space missions using radioisotope power systems. Nuclear News, 1999, 42:26-34.

10 黛荠祖. 210Po放射性同位素电池. 核技术, 1980, 3(5):8-13.

Dai J Z. 210Po radioisotope power generator. Nuclear Techniques, 1980, 3(5):8-13. (in Chinese)

11 罗志福, 蔡善钰, 何舜尧, 等. 百毫瓦级钚-238放射性同位素电池的研制. 中国原子能科学研究院年报, 2006, (1):261.

Luo Z F, Cai S Y, He S Y, et al. Development of 100 MW plutonium-238 radioisotope battery. Annual Report of China Institute Atomic Energy, 2006, (1):261. (in Chinese)

12 苗建印, 何江, 张红星. 月球探测器月夜生存热控技术及展望. 中国航天, 2015, (11):14-18.

Miao J Y, He J, Zhang H X. Thermal control technology and prospect of lunar probe's moonlit survival. Aerospace China, 2015(11):14-18. (in Chinese)

13 彭磊, 侯旭峰, 阎勇, 等. 嫦娥四号着陆器同位素温差电池设计与验证. 电源技术, 2020, 44(4):607-612.

Peng L, Hou X F, Yan Y, et al. Design and verification of radioisotope thermoelectric generator for Chang'e-4 lander. Chinese Journal of Power Sources, 2020, 44(4):607-612. (in Chinese)

14 孙浩, 王成龙, 刘逍, 等. 水下航行器微型核电源堆芯设计. 原子能科学技术, 2018, 52(4):646-651.

Sun H, Wang C L, Liu X, et al. Reactor core design of micro nuclear power source applied for underwater vehicle. Atomic Energy Science and Technology, 2018, 52(4):646-651. (in Chinese)

15 Breedlove J J, Zagarola M V, Nellis G F, et al. Life and reliability characteristics of turbo-Brayton coolers//Ross R G. Cryocoolers 11.

Boston:Springer US, 2002:489-497.

16 Zagarola M V, Izenson M G, Breedlove J J, et al. An advanced turbo-Brayton converter for radioisotope power systems. AIP Conference Proceedings, 2005, 746(1):632-640.

17 王心亮, 段宗武, 陈虹. 核能利用中的静态能量转换技术. 舰船科学技术, 2011, 33(8):140-144.

Wang X L, Duan Z W, Chen H. Prospects of static energy conversion technology for nuclear power application. Ship Science and Technology, 2011, 33(8):140-144. (in Chinese)

18 吴伟仁, 刘继忠, 赵小津, 等. 空间核反应堆电源研究. 中国科学:技术科学, 2019, 49(1):1-12.

Wu W R, Liu J Z, Zhao X J, et al. System engineering research and application foreground of space nuclear reactor power generators. Scientia Sinica (Technologica), 2019, 49(1):1-12. (in Chinese)

19 牛厂磊, 罗志福, 雷英俊, 等. 深空探测先进电源技术综述. 深空探测学报, 2020, 7(1):24-34.

Niu C L, Luo Z F, Lei Y J, et al. Advanced power source technology of deep space exploration. Journal of Deep Space Exploration, 2020, 7(1):24-34. (in Chinese)

20 钟武烨, 赵守智, 郑剑平, 等. 空间热离子能量转换技术发展综述. 深空探测学报, 2020, 7(1):47-60.

Zhong W Y, Zhao S Z, Zheng J P, et al. A review of technology development of thermionic energy conversion for space application. Journal of Deep Space Exploration, 2020, 7(1):47-60. (in Chinese)

21 王傲, 申凤阳, 胡古, 等. 热管空间核反应堆电源的研究进展. 核技术, 2020, 43(6):9-15.

Wang A, Shen F Y, Hu G, et al. A survey of heatpipe space nuclear reactor power supply. Nuclear Techniques, 2020, 43(6):9-15. (in Chinese)

22 Li H, Lal A, Blanchard J, et al. Self-reciprocating radioisotopepowered cantilever. Journal of Applied Physics, 2002, 92(2):1122-1127.

23 Zhou Y, Zhang S X, Li G P. A kind of dynamic radioisotope batteries based on PZT and its preparing method:PRC, 105427913A, 2016-03-29.

24 Polu M B. Direct conversion from radioisotope energy to electric energy device:PRC, 87103077A, 1987-11-04.

25 Bower K E, Barbanel Y A, Shreter Y G, et al. Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries. Boca Raton:CRC Press, 2002.

26 Xu Z H, Tang X B, Hong L, et al. Development of a beta radioluminescence nuclear battery. Nuclear Science and Techniques, 2014, 25(4):81-86.

27 Sun W, Kherani N P, Hirschman K D, et al. A threedimensional porous silicon p-n diode for betavoltaics and photovoltaics. Advanced Materials, 2005, 17(10):1230-1233.

28 Lu M, Zhang G G, Fu K, et al. Gallium Nitride Schottky betavoltaic nuclear batteries. Energy Conversion and Management, 2011, 52(4):1955-1958.

29 Olsen L C, Cabauy P, Elkind B J. Betavoltaic power sources. Physics Today, 2012, 65(12):35-38.

30 刘本建, 张森, 郝晓斌, 等. 金刚石辐射伏特效应同位素电池器件研究进展. 人工晶体学报, 2022, 51(5):801-813.

Liu B J, Zhang S, Hao X B, et al. Research progress on diamond radio-voltaic effect isotope batteries devices. Journal of Synthetic Crystals, 2022, 51(5):801-813. (in Chinese)

31 Schock A, Mukunda M, Or C, et al. Design, analysis, and optimization of a radioisotope thermophotovoltaic (RTPV) generator, and its applicability to an illustrative space mission. Acta Astronautica, 1995, 37:21-57.

32 Schock A, Mukunda M, Or C, et al. Analysis, optimization, and assessment of radioisotope thermophotovoltaic system design for an illustrative space mission. AIP Conference Proceedings, 1995, 321(1):331-356.

33 乔在祥, 陈文浚, 杜邵梅. 热光伏技术的研究进展. 电源技术, 2005, 29(1):57-61.

Qiao Z X, Chen W J, Du S M. Recent development of thermophotovoltaic technologies. Chinese Journal of Power Sources, 2005, 29(1):57-61. (in Chinese)

34 Datas A, Martí A. Thermophotovoltaic energy in space applications:Review and future potential. Solar Energy Materials and Solar Cells, 2017, 161:285-296.

35 王磊, 樊志民, 隋鑫, 等. 碱金属热电转换器的原理及其应用. 船电技术, 2020, 40(7):6-10.

Wang L, Fan Z M, Sui X, et al. Principle and application of alkali metal thermoelectric converter. Marine Electric & Electronic Engineering, 2020, 40(7):6-10. (in Chinese)

36 刘飞标, 朱安文, 唐玉华. 磁流体发电系统在空间电源中的应用研究. 航天器工程, 2015, 24(1):111-119.

Liu F B, Zhu A W, Tang Y H. Research on MHD power generation system in space electrical power application. Spacecraft Engineering, 2015, 24(1):111-119. (in Chinese)

37 郭皓, 杜金秋. 海洋核污染与核素迁移. 海洋开发与管理, 2014, 31(7):83-86.

Guo Hao, Du J Q. Marine nuclear pollution and nuclide migration. Ocean Development and Management, 2014, 7:83- 86. (in Chinese)

38 江伟钰. 论21世纪核使用和全球和平与安全的国际法责任确定——暨《不扩散核武器公约》 35周年确定. 华东理工大学学报(社会科学版), 2005, 20(2):93-98.

Jiang W Y. On the nuclear usage and the international legal liability decision of world peace and security. Social Sciences Journal of Ecust, 2005, 20(2):93-98. (in Chinese)

39 段小松. 论国际海上核污染法律制度的完善——以日本海上核污染为例. 特区经济, 2011, (10):249-251.

Duan X S. international sea nuclear pollution legal system's perfection-Take Japan nuclear pollution on sea as example. Special Zone Economy, 2011, (10):249-251. (in Chinese)

40 Mohamed EIBaradei, Edwin Nwogugu, John Rames. 国际法和核能:法律框架概述. 国际原子能机构通报, 1995, 36(3):16-25.

EIBaradei M, Nwogugu E, Rames J. International law and nuclear energy:An overview of the legal framework. IAEA Bulletin, 1995, 36(3):16-25. (in Chinese)

Share

COinS