•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

circular economy; carbon neutrality; “3R” principles; resource efficiency; energy saving; emissions reduction

Document Type

Energy Transition under Carbon Neutrality

Abstract

It is challenging to promote global climate change governance under the current complicated international contexts. As a country with the largest carbon emission, China has committed to achieve carbon peak by 2030 and carbon neutrality by 2060. However, carbon neutrality is a complex system engineering and relies on the implementation of circular economy. Based upon “3R” principles of reduce, reuse, and recycle, this study investigates the internal relations between circular economy and carbon neutrality and identifies the key position of circular economy in achieving carbon neutrality targets. Several policy implications are raised to help promote the development of circular economy and achieve carbon neutrality targets.

First page

1030

Last Page

1038

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 数据资讯:全球碳中和的学界研究与政府规划概况. 中国科学院院刊, 2021, 36(3):367-370.

2 Su B W, Heshmati A, Geng Y, et al. A review of the circular economy in China:Moving from rhetoric to implementation. Journal of Cleaner Production, 2013, 42:215-227.

3 Geng Y, Sarkis J, Bleischwitz R. How to globalize the circular economy. Nature, 2019, 565:153-155.

4 Stahel W R. The circular economy. Nature, 2016, 531:435-438.

5 Ellen MacArthur Foundation. Completing the Picture:How the Circular Economy Tackles Climate Change. (2019-09-26)[2021-08-30]. https://emf.thirdlight.com/link/2j2gtyion7ia-n3q5ey/@/preview/1?o.

6 诸大建, 朱远. 生态文明背景下循环经济理论的深化研究. 中国科学院院刊, 2013, 28(2):207-218.

7 Allwood J M. Unrealistic techno-optimism is holding back progress on resource efficiency. Nature Materials, 2018, 17(12):1050-1051.

8 Apple Inc. Environmental Progress Report 2021. (2021-04-01)[2021-08-30]. https://www.apple.com.cn/environment/pdf/Apple_Environmental_Progress_Report_2021.pdf.

9 Nansai K, Nakajima K, Kagawa S, et al. Global flows of critical metals necessary for low-carbon technologies:The case of neodymium, cobalt, and platinum. Environmental Science & Technology, 2014, 48(3):1391-1400.

10 Baars J, Domenech T, Bleischwitz R, et al. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nature Sustainability, 2021, 4(1):71-79.

11 Hertwich E G. Increased carbon footprint of materials production driven by rise in investments. Nature Geoscience, 2021, 14(3):151-155.

12 Ellen MacArthur Foundation. The New Plastics Economy-Rethinking the Future of Plastics. (2017-11-22)[2021-08-30]. https://emf.thirdlight.com/link/ftg1sxxb19tm-zgd49o/@/preview/1?o.

13 Zheng J J, Suh S. Strategies to reduce the global carbon footprint of plastics. Nature Climate Change, 2019, 9(5):374-378.

14 Mathews J A, Tan H. Circular economy:Lessons from China. Nature, 2016, 531:440-442.

15 Peng S T, Yang Y, Li T, et al. Environmental benefits of engine remanufacture in China's circular economy development. Environmental Science & Technology, 2019, 53(19):11294-11301.

16 Safanama D, Ji D X, Phuah K C, et al. Round-trip efficiency enhancement of hybrid Li-air battery enables efficient power generation from low-grade waste heat. ACS Sustainable Chemistry & Engineering, 2020, 8(50):18500-18505.

17 工业和信息化部. 再生有色金属产业发展推进计划. (2011-02-11)[2021-08-30]. http://www.gov.cn/gzdt/2011-02/11/content_1801310.htm.

18 IAI. Aluminium Sector Greenhouse Gas Pathways to 2050. (2021-03-01)[2021-08-30]. https://international-aluminium.org/resource/aluminium-sector-greenhouse-gas-pathways-to-2050-2021/.

19 Cullen J M, Allwood J M. Mapping the global flow of aluminum:From liquid aluminum to end-use goods. Environmental Science & Technology, 2013, 47(7):3057-3064.

20 Watari T, Nansai K, Nakajima K, et al. Integrating circular economy strategies with low-carbon scenarios:Lithium use in electric vehicles. Environmental Science & Technology, 2019, 53(20):11657-11665.

21 Du Y B, Yang W C, Ge Y, et al. Thermal conductivity of cement paste containing waste glass powder, metakaolin and limestone filler as supplementary cementitious material. Journal of Cleaner Production, 2021, 287:125018.

22 呼永锋, 梁梅, 张永祥, 等. A2/O+MBR工艺运行效果与碳排放特征研究. 中国环境科学, 2021, doi:10.19674/j.cnki. issn1000-6923.20210517.005.

23 诸大建. 中国循环经济与可持续发展. 北京:科学出版社, 2007.

24 Ellen MacArthur Foundation. The Circular Economy Opportunity for Urban & Industrial Innovation in China. (2018-9-19)[2021-08-30]. https://emf.thirdlight.com/link/tfoi8n2iwpa8-bg-7jz3/@/preview/1?o.

25 马晓君, 李煜东, 王常欣, 等. 约束条件下中国循环经济发展中的生态效率——基于优化的超效率SBM-MalmquistTobit模型. 中国环境科学, 2018, 38(9):3584-3593.

26 Yuan X L, Liu M Y, Yuan Q, et al. Transitioning China to a circular economy through remanufacturing:A comprehensive review of the management institutions and policy system. Resources, Conservation and Recycling, 2020, 161:104920.

27 Dong H J, Geng Y, Yu X M, et al. Uncovering energy saving and carbon reduction potential from recycling wastes:A case of Shanghai in China. Journal of Cleaner Production, 2018, 205:27-35.

28 Awasthi A K, Li J H, Koh L, et al. Circular economy and electronic waste. Nature Electronics, 2019, 2(3):86-89.

29 孟小燕, 王毅, 郑馨竺. 碳中和愿景下的循环经济建设:芬兰图尔库市的管理经验及启示. 环境保护, 2021, 49(12):76-80.

Share

COinS