•  
  •  
 

Bulletin of Chinese Academy of Sciences (Chinese Version)

Keywords

digital technology; carbon neutrality; energy industry; path

Document Type

Energy Transition under Carbon Neutrality

Abstract

In the era of digital economy, digital technology is the best tool to achieve China's goal of carbon neutrality. The energy industry is the largest source of carbon emissions in China, and how to use digital technology to peak the carbon dioxide emissions and achieve carbon neutrality goal in energy industry has attracted widespread attention. The article first explains the important strategic role of digital technology in carbon neutrality, and then analyzes the related theoretical research and application progress of digital technology and carbon emission reduction in the literature, revealing the problems of current digital technology applied to carbon neutrality in energy industry. Finally, the article puts forward the general guidelines of digital technology to promote China's carbon neutrality process, as well as the main path of implementation of digital technologies, such as big data, digital twins, artificial intelligence, and blockchain, to assist the realization of carbon neutrality goal in China's energy industry.

First page

1019

Last Page

1029

Language

Chinese

Publisher

Bulletin of Chinese Academy of Sciences

References

1 刘振亚. 实现碳达峰、碳中和的根本途径. 电力设备管理, 2021, (3):20-23.

2 吴张建. 面向碳中和的未来能源发展数字化转型思考. 能源, 2021, (2):54-57.

3 洪竞科, 李沅潮, 蔡伟光. 多情景视角下的中国碳达峰路径模拟——基于RICE-LEAP模型. 资源科学, 2021, 43(4):639-651.

4 巢清尘. "碳达峰和碳中和"的科学内涵及我国的政策措施. 环境与可持续发展, 2021, 46(2):14-19.

5 童光毅. 基于双碳目标的智慧能源体系构建. 智慧电力, 2021, 49(5):1-6.

6 于明, 张恩铭. "十四五" 我国综合能源行业发展面临形势与趋势研判——深化新能源革命,力促碳达峰、碳中和. 中国科技投资, 2021, (10):6-8.

7 王继业, 孟坤, 曹军威, 等. 能源互联网信息技术研究综述. 计算机研究与发展, 2015, 52(5):1109-1126.

8 Zhou K L, Yang S L, Shao Z. Energy Internet:The business perspective. Applied Energy, 2016, 178:212-222.

9 Jordehi A R. Allocation of distributed generation units in electric power systems:A review. Renewable and Sustainable Energy Reviews, 2016, 56:893-905.

10 Kaur A, Kaushal J, Basak P. A review on microgrid central controller. Renewable and Sustainable Energy Reviews, 2016, 55:338-345.

11 Asmus P. Microgrids, virtual power plants and our distributed energy future. The Electricity Journal, 2010, 23(10):72-82.

12 Tuballa M L, Abundo M L. A review of the development of Smart Grid technologies. Renewable and Sustainable Energy Reviews, 2016, 59:710-725.

13 Sani A S, Yuan D, Jin J, et al. Cyber security framework for Internet of Things-based Energy Internet. Future Generation Computer Systems, 2019, 93:849-859.

14 别朝红, 王旭, 胡源. 能源互联网规划研究综述及展望. 中国电机工程学报, 2017, 37(22):6445-6462.

15 Pratt R G, Balducci P J, Gerkensmeyer C, et al. The Smart Grid:An Estimation of the Energy and CO2 Benefits. Oak Ridge:Office of Scientific and Technical Technical Information, 2010.

16 Wang J H, Huang Z H. The recent technological development of intelligent mining in China. Engineering, 2017, 3(4):439-444.

17 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及"十四五"发展方向. 煤炭学报, 2021, 46(1):1-15.

18 Dong L J, Sun D Y, Han G J, et al. Velocity-free localization of autonomous driverless vehicles in underground intelligent mines. IEEE Transactions on Vehicular Technology, 2020, 69(9):9292-9303.

19 张帆, 葛世荣, 李闯. 智慧矿山数字孪生技术研究综述. 煤炭科学技术, 2020, 48(7):168-176.

20 梁文福. 油田开发智能应用系统建设成果及展望. 大庆石油地质与开发, 2019, 38(5):283-289.

21 Williams E. Environmental effects of information and communications technologies. Nature, 2011, 479:354-358.

22 Hittinger E, Jaramillo P. Internet of Things:Energy boon or bane?. Science, 2019, 364:326-328.

23 Sun K Y, Luo N, Luo X, et al. Prototype energy models for data centers. Energy and Buildings, 2020, 231:110603.

24 de Vries A. Bitcoin's growing energy problem. Joule, 2018, 2(5):801-805.

25 Jiang S R, Li Y Z, Lu Q Y, et al. Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China. Nature Communications, 2021, 12(1):1938.

26 于海达, 杨秀春, 徐斌, 等. 草原植被长势遥感监测研究进展. 地理科学进展, 2012, 31(7):885-894.

27 张雪薇, 韩震, 周玮辰, 等. 智慧海洋技术研究综述. 遥感信息, 2020, 35(4):1-7.

28 荣佳, 彭勃, 刘琦, 等. 碳市场对碳捕集、利用与封存产业化发展的影响. 热力发电, 2021, 50(1):43-46.

29 樊静丽, 李佳, 晏水平, 等. 我国生物质能-碳捕集与封存技术应用潜力分析. 热力发电, 2021, 50(1):7-17.

30 蔡兆男, 成里京, 李婷婷, 等. 碳中和目标下的若干地球系统科学和技术问题分析. 中国科学院院刊, 2021, 36(5):602-613.

31 Wang Z H, Xue M T, Wang Y T, et al. Big data:New tend to sustainable consumption research. Journal of Cleaner Production, 2019, 236:117499.

32 方精云, 郭兆迪, 朴世龙, 等. 1981-2000年中国陆地植被碳汇的估算. 中国科学(D辑:地球科学), 2007, 37(6):804-812.

33 张军莉, 刘丽萍. 国内区域碳排放预测模型应用综述. 环境科学导刊, 2019, 38(4):15-21.

34 谢高地, 李士美, 肖玉, 等. 碳汇价值的形成和评价. 自然资源学报, 2011, 26(1):1-10.

35 吴振信, 石佳. 基于STIRPAT和GM(1,1)模型的北京能源碳排放影响因素分析及趋势预测. 中国管理科学, 2012, 20(S2):803-809.

36 Hu Y C, Jiang P, Tsai J F, et al. An optimized fractional grey prediction model for carbon dioxide emissions forecasting. International Journal of Environmental Research and Public Health, 2021, 18(2):587.

37 Fu C, Zhang S Q, Chao K H. Energy management of a power system for economic load dispatch using the artificial intelligent algorithm. Electronics, 2020, 9(1):108.

38 El-Sehiemy R A, Rizk-Allah R M, Attia A F. Assessment of hurricane versus sine-cosine optimization algorithms for economic/ecological emissions load dispatch problem. International Transactions on Electrical Energy Systems, 2019, 29(2):e2716.

39 do Amaral Burghi A C, Hirsch T, Pitz-Paal R. Artificial learning dispatch planning for flexible renewable-energy systems. Energies, 2020, 13(6):1517.

40 程乐峰, 余涛, 张孝顺, 等. 信息-物理-社会融合的智慧能源调度机器人及其知识自动化:框架、技术与挑战. 中国电机工程学报, 2018, 38(1):25-40.

41 杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统:发展现状、对比及展望. 自动化学报, 2019, 45(11):2001-2031.

Share

COinS